

A Zwitterionic Carbanion Frustrated by Boranes – Dihydrogen Cleavage with Weak Lewis Acids via an "Inverse" Frustrated Lewis Pair Approach

Hui Li, Adelia J. A. Aquino, David B. Cordes, Fernando Hung-Low, William L. Hase, and Clemens Krempner*

Texas Tech University, Department of Chemistry & Biochemistry, Box 41061, Lubbock, Texas 79409-1061, United States

Supporting Information

ABSTRACT: The synthesis, structural characterization, and acid-base chemistry of $[C(SiMe_2OCH_2CH_2OMe)_3]$ Na (2), a sterically encumbered zwitterionic organosodium compound, is reported. 2 is a strong Brønsted base that forms frustrated Lewis pairs (FLPs) with a number of boron-containing Lewis acids ranging from weakly Lewis acidic aryl and alkyl boranes to various alkyl borates. These intermolecular FLPs readily cleave H₂, which confirms that even poor Lewis acids can engage in FLP-mediated H₂ cleavage provided that the present bulky base is of sufficiently high Brønsted basicity.

T he transition-metal-free heterolytic cleavage of H_2 via frustrated Lewis pairs (FLPs), pioneered by Stephan,¹ represents an innovative concept in sustainable chemistry. It has the potential of replacing expensive, less abundant, and toxic precious metals in their classical domain, the catalytic hydrogenation of unsaturated organic species.² FLPs are sterically encumbered Lewis pairs unable to form classical Lewis acid—base complexes due to unfavorable repulsive interactions (frustration). Key to this unique mode of bond activation is the unquenched Lewis acidity and basicity of an FLP, which polarizes the H–H bond and facilitates its heterolytic cleavage.³

A number of Lewis bases ranging from amines, phosphines, to strongly basic carbenes⁴ and phosphonium ylides⁵ have been successfully utilized in FLP-induced H₂ cleavage. In contrast, the Lewis acidic component with a few exceptions⁶ has been limited to expensive, highly fluorinated, but strongly Lewis acidic boranes such as $B(C_6F_5)_3$ and related systems. Even modest reductions in the Lewis acidity of the borane resulted in inactive FLPs with the commonly used base components.⁷ Computational studies regarding the thermodynamic feasibility of FLP induced H₂ cleavage, however, suggested that weaker Lewis acids, most of them being cheaper and more readily available, might be active FLP components as well, provided a sufficiently strong base is used.^{3c}

Zwitterionic carbanions, of which the carbanion is charge separated from the metal cation by internal donor bridges, are a rare class of strong Brønsted and Lewis bases.⁸ As a result of charge separation the stereochemically active electron pair is largely localized at the "naked carbanion" and is accessible for Lewis acid—base chemistry.⁹ Herein, we report on the synthesis, structural characterization, and "frustrated" Lewis acid—base chemistry of the first zwitterionic organosodium compound, $[C(SiMe_2OCH_2CH_2OMe)_3]$ Na. We will demonstrate that this strongly basic and sterically encumbered zwitterion forms intermolecular FLPs with weak boron-containing Lewis acids capable of heterolytically cleaving H₂.

Our approach to enforce charge separation in carbanionic structures involves the incorporation of polydonor groups directly bound to the carbanion, a strategy that we already successfully applied to the construction of zwitterionic silyl anions.¹⁰ The synthesis of the new carbanion **2** is outlined in Scheme 1 and involves the generation of $HC(SiMe_2Cl)_3$ via

Scheme 1. Synthesis of Zwitterion 2

chlorodemethylation of $HC(SiMe_3)_3$ with $AlCl_3/acetyl$ chloride, followed by treatment with excess $HOCH_2CH_2OMe/NEt_3$ to produce 1 in 94% yield. Deprotonation of 1 with benzylsodium cleanly generates zwitterionic carbanion 2, which is an air- and moisture-sensitive colorless solid that dissolves in common organic solvents including hexanes, benzene, toluene, THF, and ethers.

2 was fully characterized by NMR spectroscopy, combustion and X-ray analysis (Figure 1). The X-ray data confirm a tripodal structure with the three bidentate donor groups of the podand coordinating in a chelate fashion to the sodium cation whose coordination sphere is best described as distorted octahedral. The central C6–Na distance with 3.22 Å is significantly longer than in other organo sodium compounds and suggests only weak if any bonding cation–anion interactions.

To have an estimate of the proton affinity of the "naked" carbanion, the pK of 1 (conjugate acid of zwitterion 2) was

Received: September 9, 2013 Published: October 14, 2013

Figure 1. (Left) Solid-state structure of **2** (black = carbon, white = hydrogen); (Right) HOMO of **2**.

determined from acid-base reactions of **2** with substituted fluorenes using ¹H NMR spectroscopy (see Supporting Information). Evidently, **2** ($pK_{(DMSO)}$ of **1** = 22.5) is a considerably weaker base than LiC(SiMe₃)₃,¹¹ which is attributed to the presence of the alkoxide donors bound to silicon (Chart 1). These electron-withdrawing groups signifi-

cantly reduce the electron density at the anionic carbon as reflected in the shorter C–Si bonds of **2** [av. 1.79 Å] relative to $\text{LiC}(\text{SiMe}_3)_3$ [av. 1.83–1.84 Å].¹² The notion that the reactive center is the "naked" carbanion is supported by electronic structure calculations, which revealed the HOMO of **2** to be largely located at the central anionic CSi₃ unit (Figure 1). It is of further note that the Brønsted basicitiy of **2** is similar to that of 1,3-di-*tert*-butylimidazol-2-ylidene¹³ (Chart 1). This sterically encumbered carbene in combination with the strong Lewis acid $B(C_6F_5)_3$ forms a "metastable" frustrated Lewis pair (FLP) capable of cleaving H₂ irreversibly.^{4a,b}

The favorable properties of 2, high Brønsted basicity combined with the efficient steric protection of the "naked" carbanion, prompted us to develop novel carbanion-based FLP systems with simple boranes and to test their potential as H₂ cleaving FLPs. First, 2 was treated with excess BH₃ and the classical Lewis acid-base adduct 3 was isolated as a crystalline material in 96% yield. When BPh₃, FBMes₂, HBMes₂, BMes₃, and B(OMes)₃ were treated, respectively, with 2, no Lewis acidbase adducts were obtained as a result of steric frustration. Benzene solutions of these FLPs are stable over prolonged periods of time. Astonishingly, the FLPs 2/BPh₃, 2/HBMes₂, and $2/FBMes_2$ engage in heterolytic cleavage of H₂, while 2/BMes₃ and $2/B(OMes)_3$ were inactive in C_6D_6 solutions, presumably due to extensive repulsive interactions. Note that as single components neither 2 nor the employed boranes react with H_2 even after longer periods of time and higher pressures (4 atm).

Upon adding H₂ to $2/BPh_3$ and $2/HBMes_2$, respectively, crystalline solids were isolated from solution and characterized by NMR spectroscopy as the borate salts 4 and 5 (Scheme 2). The cationic parts of 4 and 5 exhibit ²³Na resonances at 0.3 and

Scheme 2. Reaction of $2/BR_3$ with H_2

3.1 ppm and ¹H resonances at -0.58 and 0.31 pm for the H– CSi₃ units, respectively. The anions, HBPh₃⁻ and H₂BMes₂⁻, give rise to ¹¹B resonances at -8.5 ppm and -25.8 ppm with B– H coupling constants of ~ 79 Hz (doublet) and ~ 74 Hz (triplet), respectively. Note that also the FLP **2**/FBMes₂ (2:1 molar ratio) heterolytically cleaves H₂ to cleanly generate salt **5**. We assume that in the first step of this FLP-mediated double hydrogenation reaction [HFBMes₂][HC(SiMe₂OCH₂CH₂OMe)₃Na] is formed, which then readily decays into **1**, NaF, and HBMes₂. The latter borane in combination with **2** cleaves H₂ to finally generate **5**.

The structures of **4** and **5** were further confirmed by X-ray analysis (Figures 2 and 3). The structural parameters are in full

Figure 2. Solid-state structure of **4** (black = carbon, red = oxygen, white = hydrogen; minor disordered form has been omitted).

agreement with tetrahedral $HBPh_3^-$ and $H_2BMes_2^-$ anions with av. C-B-C angles of 114° and 110° and B-H bond lengths of 1.1 and 1.13 Å, respectively. Notably, the cation and anion in 4

Figure 3. Solid-state structure of **5** (black = cabon, red = oxygen, white = hydrogen; toluene has been omitted for clarity).

pack such that the CH and BH units are oriented toward each other with a C–H…H–B distance of ca. 2.18 Å, significantly shorter than that found in 6 (2.47 and 2.98 Å) and the salts $[Bu^t_{3}PH…HB(C_6F_5)_3]^{1b}$ with 2.75 Å and $[Bu^t_{3}PH…HB(c_hexyl)(C_6F_5)_2]^{14}$ with 2.63 Å. Indeed, diffusion experiments (¹H DOSY NMR) in C_6D_6 show that the structure of 4 is retained in solution nondissociated, while in THF dissociation into the cation and anion occurs.

Aiming at the limit of FLP-mediated H_2 -cleavage with 2 as the base component we employed even weaker Lewis acids such as BEt₃ and B(OMe)₃ (Table 1). Again, in both cases no Lewis

Table 1. Acceptor Numbers $(ANs)^{17}$ and Calculated Gas-Phase Hydride Affinities $[\Delta H_{HA}/kcal/mol]$ of Selected Boranes¹⁸

borane	AN^{a}	$-\Delta H_{ m HA}$	
$B(C_6F_5)_3$	78.2 ¹⁹	112.0 ²⁰	
BH_3	79.0	73.7 ¹⁸	
BPh ₃	65.6 ¹⁹	74.4	
HBMes ₂	37.3	74.7	
FBMes ₂	16.4	64.7	
BEt ₃	30.3	58.5	
$B(OMe)_3$	13.2	38.2	
^{<i>a</i>} Measured in C_6D_6 ; molar ratio $BR_3/OPEt_3 = 5:1$.			

acid-base adducts were obtained with 2, presumably as a result of both steric and electronic frustration. Treating the FLP 2/ $B(OMe)_3$ with H_2 did not lead to H_2 cleavage even under forced conditions, due to the extremely poor Lewis acidity and low hydride affinity of B(OMe)₃. However, exposure of hexanes solutions of $2/BEt_3$ under an atmosphere of H_2 (2.5 atm, 25 °C) resulted after 1 h in the formation of a precipitate, which after one day was isolated from the solution and identified by NMR spectroscopy as the BEt₃-adduct 7. In the ¹¹B NMR, the boron signal of 7 appears as a broad singlet for the $[Et_3B-H-BEt_3]$ unit, rather than as the expected doublet from scalar B-H coupling. The presence of a B-H bond in 7 was confirmed via hydride transfer to HBMes₂. Inspection of the reaction mixture by ¹¹B NMR revealed a doublet at ~26 ppm with a coupling constant of 74 Hz arising from the H₂BMes₂⁻ unit. The identity of 7 was further confirmed by its independent synthesis from the reaction of 1 with Na[HBEt₃] followed by the addition of BEt₃ (Scheme 3). Interestingly, intermediate 6 could not be detected in none of the H_2 cleavage reactions.

Notably, examples of *intermolecular* FLP-mediated H₂ cleavage involving medium to weak Lewis acids such as FBMes₂, HBMes₂, and BEt₃ are without precedence. The only trialkyl borane able to

engage in H₂ cleavage was reported recently by Labinger and Bercaw.¹⁵ Even for BPh₃ only one example, the synthesis and isolation of [Bu^t₃PH][HBPh₃], derived from the reaction of the intermolecular FLP Bu^t₃P/BPh₃ with H₂ and claimed to be stable at room temperature is reported.^{1b} Its formation via H₂-cleavage has been questioned recently by the Papai group due to the insufficient Brønsted basicity of the Lewis base component PBu^t₃. DFT calculations of the Gibbs free energy for the overall reaction BPh₃ + PBu^t₃ + H₂ \rightarrow [Bu^t₃PH][HBPh₃] in toluene as solvent ($\Delta G_{\rm R}$ = +18.2 kcal/mol), indeed, disfavor formation of the product.^{3c} Our results seem to be in line with Papai's calculations, as our base component, carbanion **2** (pK_(DMSO) \approx 22.5), is a considerably stronger base than PBu^t₃ (pK_(H₂O) = 11.4).¹⁶

That strong bases are required to form stable products upon cleavage of molecular hydrogen with weak Lewis acids is further supported by calculations of the Gibbs free energies of the H_2 -cleavage with the FLPs $2/BPh_3$, $2/BEt_3$, and $2/B(OMe)_3$. The results are shown in Table 2 for both the gas and solvent phase.

Table 2. Calculated Gibbs Free Energies^{*a*} [ΔG_R in kcal/mol] for Heterolytic H₂ Cleavage with 2 and Selected Boranes {8 = [(MeO)₃BH][HC(SiMe₂OCH₂CH₂OMe)₃Na]}

reaction	$\Delta G_{ m R}$ (gas phase)	$\Delta G_{\rm R}$ (hexane)	$\Delta G_{\rm R}$ (benzene)
$2 + \mathbf{H}_2 + \mathbf{BPh}_3 \rightarrow 4$	6.7	5.1	1.0
$2 + \mathbf{H}_2 + \mathbf{BEt}_3 \rightarrow 6$	21.9	14.2	9.4
$2 + \mathbf{H}_2 + \mathbf{B}(\mathbf{OMe})_3 \rightarrow 8$	27.5	22.0	22.3
^a DFT/B3LYP/SVP.			

As expected, the thermodynamic feasibility of these reactions is in the order 4 > 6 > 8 and correlates well with the order in gasphase hydride affinity ($\Delta H_{\rm HA}$) of the individual borane components that is BPh₃ > BEt₃ > B(OMe)₃ (Table 1). In line with our experimental results only 4 is predicted to form a stable product in the solvent phase. Salt 6 (not detected but independently synthesized) is at least thermally accessible, while 8 (not observed) is highly unstable. That 7, the BEt₃ adduct of salt 6, was isolated from the H₂ cleavage reaction with excess BEt₃ underlines the importance of bridging B–H–B interactions in stabilizing the borohydride of the final product via dispersion of the negative charge.²¹

The inability of **2** to engage in H₂ cleavage with the poor Lewis acid B(OMe)₃ encouraged us to employ $(Me_3Si)_3CLi(THF)_2$ as a base component, a more than 10 orders in magnitude stronger Brønsted base than **2**. Since B(OMe)₃ is known to react with $(Me_3Si)_3CLi(THF)_2$ to form $(Me_3Si)_3CB(OMe)_2^{22}$ the electronically similar but bulkier borate B(OPrⁱ)₃ was chosen as a Lewis acid component. Indeed, THF solutions of the FLP $(Me_3Si)_3CLi/B(OPr^i)_3$ heterolytically cleave H₂ (pressure 2.5 atm) as confirmed by ¹¹B NMR spectroscopic studies, according to the following equation:

$$(Me_{3}Si)_{3}CLi + B(OPr^{i})_{3} + H_{2}$$

$$\rightarrow (Me_{3}Si)_{3}CH + Li[HB(OPr^{i})_{3}]$$

In conclusion, we have synthesized and structurally characterized **2**, the first zwitterionic organosodium compound, and demonstrated its potential as a strong base component in the FLP-mediated cleavage of H_2 . The experimental and computational results clearly show that even poor Lewis acids engage in H_2 cleavage provided that the present base is sterically

encumbered and of sufficiently high Brønsted basicity. This FLP approach—weak Lewis acid combined with a strong base—is inverse to that pioneered and exhaustively studied by Stephan, Erker, and others,^{1–5} with the latter utilizing FLPs composed of the exceptionally strong but expensive Lewis acid $B(C_6F_5)_3$ or $RB(C_6F_5)_2$ and weakly basic amines and phosphines. These systems have shown promise in FLP-mediated catalytic hydrogenations of unsaturated substrates. Studies regarding catalytic applications of "inverse" FLPs that contain strong and bulky organic bases are currently underway.

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures, compound characterization data, and spectra for all new compounds, CIF file for compounds **2**, **4**, and **5** and computational data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

clemens.krempner@ttu.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The support of our work by TTU, the Welch Foundation (D-0005), and the Vienna Scientific Cluster for computer time is greatly acknowledged. David Purkiss is thanked for carrying out some of the NMR experiments and the NSF for purchase of a JEOL ECS-400 Spectrometer (CRIF-MU CHE-1048553). Support was also provided by the TTU Department of Chemistry & Biochemistry cluster Robinson whose purchase was funded by the NSF (CRIF-MU CHE-0840493).

REFERENCES

(1) (a) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124–1126. (b) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880–1881. (c) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Frohlich, R.; Grimme, S.; Stephan, D. W. Chem. Commun. 2007, 5072–5074. (d) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 8050–8053. (e) McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 4968–4971.

(2) (a) Stephan, D. W. In *Catalysis without Precious Metals*; Bullock, M., Ed.; Wiley: 2010, pp 261–275. (b) Chen, D.; Wang, Y.; Klankermayer, J. *Angew. Chem., Int. Ed.* **2010**, *49*, 9475–9478. (c) Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. *Angew. Chem., Int. Ed.* **2012**, *51*, 10164–10168. (d) Stephan, D. W. *Org. Biomol. Chem.* **2012**, *10*, 5740–5746. (e) Segawa, Y.; Stephan, D. W. *Org. Biomol. Chem.* **2012**, *48*, 11963–11965. (f) Eros, G.; Mehdi, H.; Papai, I.; Rokob, T. A.; Kiraly, P.; Tarkanyi, G.; Soos, T. *Angew. Chem., Int. Ed.* **2010**, *49*, 6559– 6563. (g) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Froehlich, R.; Erker, G. *Angew. Chem., Int. Ed.* **2008**, *47*, 7543–7546. (h) Xu, B.-H.; Kehr, G.; Froehlich, R.; Wibbeling, B.; Schirmer, B.; Grimme, S.; Erker, G. *Angew. Chem., Int. Ed.* **2011**, *50*, 7183–7186. (i) C Liu, Y.; Du, H. J. *Am. Chem. Soc.* **2013**, *135*, 6810–6813.

(3) (a) Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 1402–1405. (b) Schirmer, B.; Grimme, S. Chem. Commun. 2010, 46, 7942–7944. (c) Rokob, T. A.; Hamza, A.; Papai, I. J. Am. Chem. Soc. 2009, 131, 10701–10710. (d) Rokob, T. A.; Hamza, A.; Stirling, A.; Soos, T.; Papai, I. Angew. Chem., Int. Ed. 2008, 47, 2435– 2438. (e) Gao, S.; Wu, W.; Mo, Y. J. Phys. Chem. A 2009, 113, 8108– 8117. (f) Pu, M.; Privalov, T. J. Chem. Phys. 2013, 138, 154305/1– 154305/12. (g) Rokob, T. A.; Bako, I.; Stirling, A.; Hamza, A.; Papai, I. J. Am. Chem. Soc. 2013, 135, 4425–4437. (4) (a) Holschumacher, D.; Bannenberg, T.; Hrib, C. G.; Jones, P. G.; Tamm, M. Angew. Chem., Int. Ed. 2008, 47, 7428. (b) Chase, P. A.; Stephan, D. W. Angew. Chem., Int. Ed. 2008, 47, 7433. (c) Kolychev, E. L.; Bannenberg, T.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Chem.—Eur. J. 2012, 18, 16938–16946. (d) Ines, B.; Holle, S.; Goddard, R.; Alcarazo, M. Angew. Chem., Int. Ed. 2010, 49, 8389–8391. (5) Alcarazo, M.; Gomez, C.; Holle, S.; Goddard, R. Angew. Chem., Int. Ed. 2010, 49, 5788–5791.

(6) Bertini, F.; Lyaskovskyy, V.; Timmer, B. J. J.; de Kanter, F. J. J.; Lutz, M.; Ehlers, A. W.; Slootweg, J. C.; Lammertsma, K. J. Am. Chem. Soc. **2012**, 134, 201–204.

(7) Neu, R. C.; Ouyang, E. Y.; Geier, S. J.; Zhao, X.; Ramos, A.; Stephan, D. W. Dalton Trans. **2010**, *39*, 4285–4294.

(8) (a) Breher, F.; Grunenberg, J.; Lawrence, S. C.; Mountford, P.; Rueegger, H. Angew. Chem., Int. Ed. 2004, 43, 2521–2524. (b) Bigmore, H. R.; Meyer, J.; Krummenacher, I.; Ruegger, H.; Clot, E.; Mountford, P.; Breher, F. Chem.—Eur. J. 2008, 14, 5918–5934. (c) Kuzu, I.; Krummenacher, I.; Hewitt, I. J.; Lan, Y.; Mereacre, V.; Powell, A. K.; Hoefer, P.; Harmer, J.; Breher, F. Chem.—Eur. J. 2009, 15, 4350–4365. (d) Cushion, M. G.; Meyer, J.; Heath, A.; Schwarz, A. D.; Fernandez, I.; Breher, F.; Mountford, P. Organometallics 2010, 29, 1174–1190. (e) Kratzert, D.; Leusser, D.; Stern, D.; Meyer, J.; Breher, F.; Stalke, D. Chem. Commun. 2011, 47, 2931–2933.

(9) Meyer, J.; Kuzu, I.; Gonzalez-Gallardo, S.; Breher, F. Z. Anorg. Allg. Chem. 2013, 639, 301–307.

(10) (a) Krempner, C.; Chisholm, M. H.; Gallucci, J. Angew. Chem., Int. Ed. 2008, 47, 410–413. (b) Li, H.; Hope-Weeks, L.-J.; Krempner, C. Chem. Commun. 2011, 47, 4117–4119. (c) Carlson, B.; Aquino, A. J. A.; Hope-Weeks, L. J.; Whittlesey, B.; McNerney, B.; Hase, W. L.; Krempner, C. Chem. Commun. 2011, 47, 11089–11091. (d) Li, H.; Hung-Low, F.; Krempner, C. Organometallics 2012, 31, 7117–7124.

(11) Streitwieser, A.; Xie, L.; Wang, P.; Bachrach, S. M. J. Org. Chem. 1993, 58, 1778–1784.

(12) (a) Viefhaus, T.; Walz, A.; Niemeyer, M.; Schwarz, W.; Weidlein, J. Z. Anorg. Allg. Chem. 2000, 626, 2040. (b) Avent, A. G.; Eaborn, C.; Hitchcock, P. B.; Lawless, G. A.; Lickiss, P. D.; Mallien, M.; Smith, J. D.; Webb, A. D.; Wrackmeyer, B. J. Chem. Soc., Dalton Trans. 1993, 3259–3263.

(13) Kim, Y.-J.; Streitwieser, A. J. Am. Chem. Soc. 2002, 124, 5757–5761.

(14) Jiang, C.; Blacque, O.; Fox, T.; Berke, H. Dalton Trans. 2011, 40, 1091–1097.

(15) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2010, 132, 3301.

(16) Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716-722.

(17) (a) Mayer, U.; Gutmann, V.; Gerger, W. Monatsh. Chem. **1975**, 106, 1235–1257. (b) Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Varma, K. S. Polymer **1996**, 37, 4629–4631.

(18) Mock, M. T.; Potter, R. G.; Camaioni, D. M.; Li, J.; Dougherty, W. G.; Kassel, W. S.; Twamley, B.; DuBois, D. L. J. Am. Chem. Soc. 2009, 131, 14454–14465.

(19) Adamczyk-Wozniak, A.; Jakubczyk, M.; Sporzynski, A.; Zukowska, G. Inorg. Chem. Commun. 2011, 14, 1753–1755.

(20) Mendez, M.; Cedillo, A. Comput. Theor. Chem. 2013, 1011, 44-56.

(21) Boss, S. R.; Coles, M. P.; Eyre-Brook, V.; Garcia, F.; Haigh, R.; Hitchcock, P. B.; McPartlin, M.; Morey, J. V.; Naka, H.; Raithby, P. R.; Sparkes, H. A.; Tate, C. W.; Wheatley, A. E. H. *Dalton Trans.* **2006**, 5574–5582.

(22) Al-Juaid, S. S.; Eaborn, C.; El-Kheli, M. N. A.; Hitchcock, P. B.; Lickiss, P. D.; Molla, M. E.; Smith, J. D.; Zora, J. A. J. Chem. Soc., Dalton Trans.: Inorg. Chem. **1989**, 447–52.